Les polynômes – Exercices – Devoirs

Exercice 1

Soit le polynôme $P = X^4 + 5X^3 + 10X^2 + 12X + 8$.

- 1. Démontrer que -2 est racine double du polynôme P.
- 2. Factoriser P dans $\mathbb{R}[X]$.
- 3. Déduire les racines de P dans \mathbb{C} .

Exercice 2

Soit le polynôme $P = X^4 + X^2 + 1$.

- 1. Déterminer les racines de P dans \mathbb{C} .
- 2. Factoriser P dans $\mathbb{C}[X]$.
- 3. En déduire une factorisation de P dans $\mathbb{R}[X]$.

Exercice 3

Soit $n \in \mathbb{N}$. Soit le polynôme $P_n = X^n$.

- 1. Déterminer le reste de la division euclidienne de P_n par $A_1 = X^2 3X 4$.
- 2. Déterminer le reste de la division euclidienne de P_n par $A_2 = X^2 + 1$.

Exercice 4

Soit le polynôme $P = X^4 - 4X^3 + 5X^2 - 2X - 6$.

- 1. On se propose de démontrer que P n'a pas de racine double.
 - (a) On se propose d'effectuer la division euclidienne de 2P par $\frac{1}{2}P'$. On note R le reste de cette division euclidienne.
 - (b) Effectuer la division euclidienne de $\frac{1}{2}P'$ par R. On note T le reste de cette division euclidienne.
 - (c) Démontrer que si a est une racine double de P, alors a est racine de R et de T.
 - (d) Démontrer que P n'a pas de racine double.
- 2. On se propose de factoriser P dans $\mathbb{R}[X]$.
 - (a) On pose X = Y + 1 et Q(Y) = P(Y + 1). Calculer Q(Y).
- (b) Calculer les racines de Q dans \mathbb{C} . En déduire les racines de P dans \mathbb{C} .
- (c) Factoriser P dans $\mathbb{C}[X]$, puis dans $\mathbb{R}[X]$.

Exercice 5

Soit le polynôme $P=X^4+2X^3-X^2-2X+10.$ Pour tout $z\in\mathbb{C},$ on pose $P(z)=z^4+2z^3-z^2-2z+10.$

- 1. Soit $x \in \mathbb{R} \setminus \{0\}$. Donner l'expression de P(x(1+i)) sous forme P(x(1+i)) = Q(x) + iR(X), où Q et R sont des polynômes à coefficients réels.
- 2. Les équations Q(x)=0 et R(x)=0 ont-elles des racines communes?
- 3. Donner deux racines complexes conjuguées de l'équation P(z)=0.
- 4. Factoriser P sous forme d'un produit de deux trinômes du second degré à coefficients réels et en déduire les racines complexes de P.

Exercice 6

Déterminer les réels p et q pour que le polynôme $P=X^3+pX+q$ soit divisible par le polynôme $Q=X^2+3X-1$.

Exercice 7

Soit $n \in \mathbb{N}$. Montrer que le polynôme $X^2 - X + 1$ divise le polynôme $P_n = (X - 1)^{n+2} + X^{2n+1}$

Exercice 8

Soit $n \in \mathbb{N} \setminus \{0, 1\}$. Calculer le reste de la division euclidienne du polynôme $P_n = (X - 3)^{2n} + (X - 2)^n - 2$ par le polynôme $(X - 2)^2$.

Exercice 9

Factoriser dans $\mathbb{R}[X]$ le polynôme $P = X^6 + 1$.

Exercice 10

Déterminer $\lambda \in]0, \infty[$ tel que le polynôme $P = X^3 - 3X + \lambda$ ait une racine double. Quelle est alors l'autre racine de P?

Exercice 11

Pour les polynômes suivants, donner la décomposition en produit de polynômes irréductibles dans $\mathbb{R}[X]$, puis la décomposition en produit de polynômes irréductibles dans $\mathbb{C}[X]$:

- $P_1 = X^2 + 5X + 6$;
- $P_2 = X^4 + 5X^2 + 6$;
- P₃ = X⁴ 4;
- $P_4 = 6X^3 17X^2 + 14X 3$;
- $P_5 = 2X^3 X^2 X 3$:
- $P_6 = X^5 + X^4 + X^3 + X^2 + X + 1$;

Exercice 12

Effectuer la division euclidienne de A par B dans les cas suivants :

- $A = 2X^5 + 3X^4 + 4X^3 + 4X^2 3X + 2$ et $B = X^3 + X^2 X + 1$;
- $A = 7X^4 X^3 + 2X 4$ et $B = X^2 3X + 5$;
- $A = 4X^3 + X^2 3iX + 5$ et B = X + 1 + i.

Exercice 13

Trouver un polynôme P tel que le reste de la division euclidienne de P par $X,\,X-1,\,X+1$ soit égal à 3.

Exercice 14

Trouver les racines du polynôme $X^2-(3+4i)$. Puis, trouver les racines du polynômes $P=X^2+(-3+i)X+(2-6i)$.