Biophysique de la circulation – Exercices – Devoirs

OCM 1 corrigé disponible

QCM14 : A propos d'un liquide réel newtonien qui s'écoule, à raison de 1litre/min, dans un conduit horizontal, de 3 m de long et de section variable (plusieurs tuyaux de longueur et de section différente agencés bout à bout) :

- A. La perte totale de charge sur les 3 m est égale à la somme des pertes de charge dans chaque tuyau élémentaire et au niveau de chaque changement de section.
- B. Le débit varie à chaque changement de tuyau.
- C. La pression de pesanteur varie au changement de section.
- D. La valeur du coefficient de viscosité dépend du calibre de chaque tuyau.
- E. Pour une vitesse de 1 m/min, la section du conduit est de 10 cm².

QCM 2 corrigé disponible

Soit un liquide en mouvement dans un conduit horizontal. Tel que vu en cours, l'effet Venturi :

- A. Se traduit par une diminution de la pression hydrostatique dans les secteurs rétrécis.
- B. Est lié à la vitesse du liquide dans le conduit.
- C. Existe quelle que soit la vitesse du liquide.
- D. Ne se rencontre qu'avec les liquides newtoniens.
- E. Peut être utilisé pour créer des phénomènes d'aspiration.

QCM 3 corrigé disponible

Un liquide en mouvement exerce une pression dynamique dont l'expression est égale à $\frac{1}{2}\rho$. v^2 dans laquelle ρ est la masse volumique du liquide et v la vitesse moyenne d'écoulement.

- A. La dimension de ρ est $[M \cdot L^3]$.
- **B.** La dimension de v est $[L \cdot T^{-1}]$.
- C. La dimension d'une pression dynamique est $[M \cdot L^{-2} \cdot T^{-1}]$.
- **D.** Une pression dynamique peut s'exprimer en kg \cdot m⁻² \cdot s⁻¹.
- E. Si la vitesse devient nulle, la pression dynamique est sans dimension.

QCM 4 corrigé disponible

Un fluide réel liquide s'écoule du point A vers le point B, à débit constant, dans un conduit inextensible circulaire horizontal, dont le diamètre diminue de moitié entre le point A et le point B.

- A. La pression hydrostatique du fluide diminue entre le point A et le point B.
- B. Les résistances à l'écoulement augmentent avec la longueur du conduit entre le point A et le point B.
- C. Les résistances à l'écoulement diminuent entre le point A et le point B.
- D. Le débit dépend de la viscosité du fluide.
- E. Les résistances à l'écoulement augmentent avec la viscosité du fluide.

QCM 5 corrigé disponible

Un liquide réel, newtonien, circule à débit constant dans un tuyau cylindrique qui décrit un U vertical (schéma ci-dessous) :

- A. La perte de charge totale est plus forte que dans un tuyau horizontal de même calibre et de même longueur totale.
- B. A hauteur identique, la pression hydrostatique a même valeur dans la portion à flux descendant et dans la portion à flux montant.
- C. La pression dynamique est plus forte dans la portion descendante que dans la portion montante.
- D. La vitesse moyenne d'écoulement est maximum dans la section la plus basse.
- E. La pression hydrostatique est maximum dans la section la plus basse.

QCM 6 corrigé disponible

Soit un liquide réel, newtonien, présentant un écoulement laminaire à l'intérieur d'un conduit horizontal de section variable.

- A- Le liquide a la même vitesse en tout point du conduit.
- B- La charge à l'entrée du conduit est supérieure à celle mesurée à sa sortie.
- C- Tout rétrécissement est susceptible de diminuer la vitesse moyenne du liquide en ce point.
- D- La pression de pesanteur est constante tout au long du conduit.
- E- Il n'existe aucune perte de charge dans ce système.

OCM 7 corrigé disponible

En 1643, les fontainiers de la ville de Florence tentent depuis plusieurs années sans résultat de pomper l'eau des puits à plus de 10 mètres de profondeur. Les travaux de Evangelista Torricelli permettent de démontrer que :

- A- Cette limite est liée à la puissance de la pompe.
- B- Il existe une pression atmosphérique
- C- Cette limite de hauteur de pompage est liée aux conditions atmosphériques
- D- Le vide crée par la pompe ne permet pas à lui seul d'assurer le pompage
- E- C'est en fait la pression exercée par l'atmosphère sur l'eau du puits qui permet l'efficacité du pompage.

OCM 8 corrigé disponible

Un liquide réel, newtonien s'écoule à la vitesse v et à débit constant dans un conduit horizontal et cylindrique. Il rencontre 3 zones successives d'élargissement du conduit, l'aire de section de celui-ci doublant chaque fois. Après ces 3 zones d'élargissement, le conduit retrouve son calibre initial :

- A La vitesse d'écoulement du liquide s'exprime par v/4, dans la première zone d'élargissement.
- B La vitesse d'écoulement du liquide s'exprime par v/16, dans la seconde zone d'élargissement.

- C La vitesse d'écoulement du liquide s'exprime par v/8, dans la troisième zone d'élargissement.
- D C'est dans la troisième zone d'élargissement que la pression statique est la plus importante.
- E On rencontre ce montage dans une trompe à vide.

OCM 9 corrigé disponible

Soit D le volume de liquide s'écoulant par unité de temps dans un conduit. La loi de Poiseuille permet d'affirmer que :

- A. Le rayon du conduit ne joue aucun rôle sur D.
- B. L'augmentation de la viscosité entraine une augmentation de D.
- Le débit dépend de la perte de charge tout au long du conduit.
- D. D dépend de la température au sein du conduit.
- E. D est indépendant de la viscosité du fluide circulant.

QCM 10 corrigé disponible

Lors de la phase de décollage d'une fusée, un astronaute subit une accélération de 5 g (dans cette situation on peut négliger la perte de charge dans les vaisseaux).

On donne : hauteur du cerveau = 1,8 m ; hauteur du cœur = 1,5 m ; pression artérielle moyenne au niveau du cœur = 13,3 kPa ; $g = 9,81 \text{ m.s}^{-2}$; considérer $\rho = 10^3 \text{ kg.m}^{-3}$

- A. en position allongée, perpendiculairement à la direction verticale de déplacement de la fusée. la pression artérielle au niveau du cerveau sera plus élevée que celle du cœur
- B. en position allongée, perpendiculairement à la direction verticale de déplacement de la fusée, la pression artérielle au niveau du cerveau sera identique à celle du cœur
- C. en position allongée, perpendiculairement à la direction verticale de déplacement de la fusée, la pression artérielle au niveau du cerveau sera moins élevée que celle du cœur
- D. en position verticale, parallèlement à la direction verticale de déplacement de la fusée, la pression au niveau du cerveau sera plus élevée que celle du cœur
- E. en conséquence les astronautes effectuent les décollages en position verticale pour ne pas risquer de perte de connaissance par diminution de pression artérielle cérébrale

QCM 11 corrigé disponible

Un cœur éjecte 120 mL de sang par battement cardiaque à une fréquence de 50 battements par minute. Le sang passe de l'atrium gauche vers le ventricule gauche au travers de la valve mitrale qui a une surface de 5 cm², puis du ventricule gauche vers l'aorte au travers de la valve aortique qui a une surface de 2,5 cm². Il n'existe pas de fuite valvulaire.

- A. De débit cardiaque est de 5 L.mn⁻¹
- B. Le débit au niveau de la valve aortique est égal au débit au niveau de la valve mitrale
- C. La vitesse moyenne au niveau de la valve aortique est supérieure à la vitesse moyenne au niveau de la valve mitrale
- D. La pression moyenne au niveau de la valve aortique est supérieure à la pression moyenne au niveau de la valve mitrale
- E. La vitesse moyenne au travers de la valve aortique est le double de la vitesse moyenne au travers de la valve mitrale

QCM 12 corrigé disponible

Soit un tube horizontal de diamètre 12 cm dans lequel circule un fluide de masse volumique 1000 kg.m⁻³ considéré comme parfait, à la vitesse 0,5 m.s⁻¹, avec une pression de 10⁵ Pa Le tube présente un rétrécissement de diamètre 4 cm

- A. le débit augmente dans le rétrécissement
- B. le débit diminue dans le rétrécissement
- C. la vitesse augmente à 4,5 m.s⁻¹ dans le rétrécissement
- D. la pression diminue à 0,9.10⁵ Pa dans le rétrécissement
- E. la pression augmente à 1,1.10⁵ Pa dans le rétrécissement

QCM 13 corrigé disponible

Un liquide parfait, de masse volumique $\rho=1000 kg/m^3$, s'écoule dans un conduit cylindrique. La pression terminale de ce liquide est supérieur à sa pression latérale de 5 Pa :

- A. La vitesse d'écoulement est de 10⁻¹ m/s.
- B. La pression d'aval est inférieur à la pression latérale de 8 Pa environ.
- C. La pression d'aval est inférieure à la pression terminale de 13 Pa environ.
- D. La pression dynamique est égale a 5 Pa.
- E. La somme (pression statique + pression de pesanteur) est inférieure à la charge de 5 Pa.

QCM 14 corrigé disponible

A propos de la résistance à l'écoulement des fluides :

- A. Il existe deux régimes d'écoulement : laminaire et turbulent.
- B. Le nombre de Reynolds permet de déterminer le régime, ainsi un diamètre du conduit élevé, une masse volumique élevée et un coefficient de viscosité du liquide élevé favorise un régime turbulent.
- C. D'après la loi de Poiseuille, le profil de vitesse d'écoulement d'un liquide non newtonien est une parabole.
- D. Lorsque la force F qui pousse un objet sphérique dans un fluide est égale aux forces de frottements f qui s'opposent à son déplacement, on atteint le régime de Stockes.
- E. Si Re < 2000, le régime est toujours laminaire.

QCM 15 corrigé disponible

A propos des résistances à l'écoulement :

- A. La loi de Poiseuille ne s'applique que pour les écoulements laminaires.
- B. Pour un liquide réel circulant le long d'un tuyau de section constante, la charge ne varie pas.
- C. Au régime de Stockes, la vitesse de l'objet se stabilise car la force de frottement est supérieure à la force à l'origine du mouvement.
- D. Le sang est un liquide réel newtonien.
- E. Sur le plan des unités, η est homogène au produit d'une pression par un temps.

QCM 16 corrigé disponible

Concernant la biophysique de la circulation, il est exact que :

- A. Sachant que son nombre de Reynolds Re = 2500, l'écoulement d'un liquide newtonien est turbulent.
- B. Dans un liquide parfait en mouvement permanent se déplaçant dans un conduit, la charge est constante tou au long du conduit.
- C. L'effet Venturi entraine une vitesse plus grande du liquide dans les sections rétrécies du conduit.
- D. Le coefficient de viscosité varie en sens inverse de la température.
- E. Un régime d'écoulement turbulent majore la perte de charge.

QCM 17 corrigé disponible

Soit un conduit horizontal dont l a section varie entre différents points qui sont dans l'ordre: - le point A avec un diamètre de 3 cm- le point B avec un diamètre de 6cm- le point C avec un diamètre de 1,5 cm- le point D avec un diamètre de 0,75 cmLe liquide qui y circule est un liquide réel, newtonien, en débit constant et laminaire quelque soient les variations de section:

- A. La charge ainsi que le débit sont plus faible au niveau du point D (plus proche de la sortie du liquide) par rapport au point A (plus proche de l'entrée du liquide).
- B. La vitesse d'écoulement est superieur au niveau des points A et B que C et D.
- C. La pression hydrostatique est supérieur en B par rapport à D.
- D. Quand les sections diminuent, les vitesses augmentent, c'est l'effet venturi qui veut ça.
- E. Le coefficient de viscosité de ce liquide ne varie pas avec la vitesse de ce liquide.

QCM 18 corrigé disponible

A propos des écoulements :

- A. La pression terminale correspond à la charge du liquide en mouvement.
- B. Un liquide Newtonien ayant un écoulement laminaire va plus vite au bord du tube qu'at centre.
- C. Lors d'une auscultation cardio-vasculaire si on a la sensation d'entendre des souffles, le régime d'écoulement sanguin est turbulent.
- D. Lorsque le débit d'un liquide Newtonien est assez fort, on passe en régime laminaire.
- E. Si le rayon du tube d'écoulement d'un liquide double, la perte de charge du liquide diminuera d'un facteur 8.

QCM 19 corrigé disponible

A propos de la mécanique des fluides :

- A. Dans un liquides parfait, en régime d'écoulement stationnaire la charge est égale a la somme de la pression dynamique et de la pression de pesanteur.
- B. Dans un liquide parfait, en régime d'écoulement stationnaire la charge est toujours constante.
- C. La loi de Pascal ne fait pas de distinction entre liquide réel et parfait.
- D. Selon l'effet Venturi lors du rétrécissement de leur zone de circulation les fluides subissent une décélération.
- E. Selon l'effet Venturi lors du rétrécissement de la zone de circulation d'un fluide on a une augmentation de la pression statique dans la portion rétrécie du tube.

QCM 20 corrigé disponible

Concernant la biophysique de la circulation, dites si les affirmations suivantes sont vraies ou fausses :

- A. Les forces de frottements intermoléculaires sont définies dans la relation de Newton.
- B. Ces forces sont inversement proportionnelles à la surface de contact entre les plans moléculaires.
- C. Pour le sang, la viscosité dépend du cisaillement.
- D. Le LCR est un liquide Newtonien.
- E. L'eau est un liquide Newtonien.

QCM 21 corrigé disponible

Soit un liquide réel newtonien, de masse volumique 4g/cm3,circulant dans un tube de 0,2cm :

- A. Si la vitesse est de 1,5 m/min et que la viscosité est de 6x10-3 Poiseuilles, le régime est laminaire.
- B. La vitesse maximale sera proportionnelle au rayon du tube à la puissance 4.
- C. La vitesse est minimale près des parois du tube.
- D. Le débit du liquide est inversement proportionnel à la viscosité.
- E. On peut appliquer la loi de Poiseuille dans ce cas.

QCM 22 corrigé disponible

A propos de la mécanique des fluides : p + hpg = constante :

- A. Lorsqu'un liquide est immobile, aucune distinction ne se fait entre un liquide parfait et un liquide réel.
- B. Selon la loi de Bernouilli : $p + h\rho g = constante$
- Avec ρ : masse volumique, h : hauteur, p : pression (hydro)statique, accélération de la pesanteur.
- C. Soit un liquide en mouvement, si la section du contenant dans lequel il circule et sa vitesse varient alors le débit varie lui aussi.
- D. Pour un liquide parfait en régime d'écoulement stationnaire, la somme de la pression et de l'énergie cinétique correspond à la charge (E).
- E. Lors de mesures de pression avec des tubes perpendiculaires, la pression terminale est inférieure à la pression latérale.

QCM 23 corrigé disponible

Un plongeur, équipé d'un dispositif adéquat de respiration, descend à 40 mètres sous la surface de l'océan :

- A. En respirant un air de composition normale, la composition plasmatique des gaz devient toxique à une certaine profondeur.
- B. Arrivé à 40 mètres de profondeur, le plongeur est soumis à une pression de 4 atm.
- C. Lors de la phase de remontée, il est fortement conseillé de ne pas faire de pause pour économiser l'air.
- D. Lors de la phase de descente, arrivé à 20 mètres de profondeur, il est soumis à une pression de 3 atm.
- E. Il suffit d'un cycle cardiaque pour extraire les excès de gaz dissous dans l'ensemble des tissus lors de la phase de remontée.

QCM 24 corrigé disponible

Soit un conduit horizontal dans lequel circule un liquide parfait, incompressible avec un débit constant. La masse volumique de ce liquide vaut 1000 kg/m³. Le conduit est composé d'une première partie d'un diamètre de 40 cm et d'une deuxième partie de diamètre 20 cm. La vitesse dans la première partie est de 0,5 m/s¹ et la pression hydrostatique vaut 150 000 Pa:

- A. D'après les données de l'énoncé on peut appliquer le théorème de Bernouilli.
- B. La vitesse dans la partie rétrécie est de 1 m/s.
- C. Dans la partie rétrécie, la pression hydrostatique augmente en même temps que la vitesse, c'est l'effet Venturi.
- D. La pression hydrostatique dans la deuxième partie vaut 148 125 Pa.
- E. La perte de charge s'effectue sous forme de chaleur.

OCM 25 corrigé disponible

Soit un conduit horizontal posé sur une table d'une hauteur de 10m, dans lequel s'écoule un liquide parfait de masse volumique: 1000 kg/m³. On donne g ou accélération de la pesanteur: 9,8 m/s².Le conduit présente une première partie élargie de rayon (r1) 20 cm dans lequel ce liquide circule à la vitesse v1 de 0,1 m/s, puis une seconde partie où il circule à la vitesse v2 de 1,6 m/s. Dans la première partie, la pression hydrostatique P1 est de 17000 Pa

- A. Le rayon r2 de la seconde partie du conduit est égal à 10 cm.
- B. La pression hydrostatique dans la seconde partie est égale à 15725Pa.
- C. On observe dans ce conduit un effet Venturi : dans la deuxième partie du conduit, la pression statique est plus faible et la vitesse plus grande.
- D. Qu'on utilise du sang ou ce liquide, la pression terminale est la même tout au long du conduit.
- E. La pression d'aval mesurée à la deuxième partie du conduit est de 111677Pa.

QCM 26 corrigé disponible

Concernant la biophysique de la circulation, dites si les affirmations suivantes sont vraies ou fausses :

- A. Les fluides parfaits sont soumis à des frottements internes.
- B. Selon la loi de Pascal, pour un liquide immobile, la pression est la même en tout point de la masse liquide situé à une même hauteur.
- C. Une pression s'exprime en Newton par cm²
- D. Pour deux points d'un même liquide immobile, c'est au point le plus haut que correspondant la plus faible pression.
- E. ogh est la pression hydrostatique.

QCM 27 corrigé disponible

En considérant une bille au sein d'un liquide réel se déplaçant de haut en bas dans un conduit vertical de longueur infinie, tel que dans la figure ci-dessous on peut affirmer que :

- A. Il s'exerce une force F sur la bille tendant à la déplacer vers le bas et liée à la gravité.
- B. Il s'exerce une force de résistance f tendant à freiner la descente de la bille
- C. Tout au long de sa descente la bille est soumise à une accélération croissante quelle que soit la longueur du conduit
- Tout au long de sa descente la bille est soumise à une vitesse croissante quelle que soit la longueur du conduit
- E. La force f est susceptible d'arrêter le déplacement de la bille vers le bas

QCM 28 corrigé disponible

Soit un liquide réel, newtonien, présentant un écoulement laminaire de débit constant à l'intérieur d'un conduit cylindrique, horizontal et comportant des sections rétrécies :

- A. Le liquide a la même vitesse en tout point d'une section du conduit.
- B. La charge à l'entrée du conduit est égale à celle mesurée à sa sortie.
- C. La viscosité du liquide peut varier en fonction de sa vitesse d'écoulement.
- D. Tout rétrécissement le long du parcours est susceptible d'entrainer un effet Venturi.
- E. La pression liée à la vitesse est constante tout au long du conduit.

QCM 29 corrigé disponible

Un fluide réel liquide s'écoule du point A vers le point B, à débit constant, dans un conduit inextensible circulaire horizontal, dont le diamètre diminue de moitié entre le point A et le point B.

- A. La pression hydrostatique du fluide diminue entre le point A et le point B.
- B. Les résistances à l'écoulement augmentent avec la longueur du conduit entre le point A et le point B.
- C. Les résistances à l'écoulement diminuent entre le point A et le point B.
- D. Le débit dépend de la viscosité du fluide.
- E. Les résistances à l'écoulement augmentent avec la viscosité du fluide.