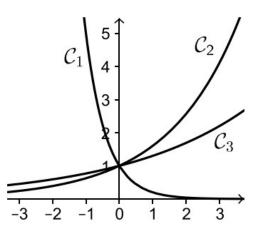

Fonctions exponentielles – Exercices - Devoirs

Exercice 1 corrigé disponible


On a représenté cicontre les fonctions f_1 , f_2 , f_3 définies par

•
$$f_2(x) = 1.3^x$$

•
$$f_3(x) = 1.6^x$$

Associer en justifiant chaque fonction à sa courbe.

Exercice 2 corrigé disponible

Donner les variations des fonctions f_1 , f_2 , f_3 définies par $f_1(x) = \left(\frac{7}{9}\right)^x$, $f_2(x) = 1.21^x$ et $f_3(x) = 0.98^x$.

Exercice 3 corrigé disponible

Vrai ou faux ? Justifier. Pour tout réel x,

a.
$$4 \times 2^x = 2^{x+2}$$

c.
$$\frac{8^x}{2^{x-2}} = 4^{x+1}$$

b.
$$\frac{5^{x+3}}{2^x} = 125 \times 2.5^x$$

d.
$$\frac{(2^x)^3}{4^{x+1}} = 2^{x-2}$$

Exercice 4 corrigé disponible

Simplifier les expressions suivantes.

a.
$$16^{\frac{1}{2}}$$

b.
$$4^{-\frac{1}{2}}$$

c.
$$4^{\frac{1}{4}} \times \sqrt{2}$$

Exercice 5 corrigé disponible

Écrire sous la forme e^k les expressions suivantes, où kest un entier relatif.

a.
$$e^2 \times e^4$$

b.
$$e^3 \times e^{-4}$$

$$(e^{-1})^2 \times e^{-1}$$

d.
$$e^{\frac{5}{2}} \times \sqrt{e}$$

a.
$$e^2 \times e^4$$
 b. $e^3 \times e^{-4}$ **c.** $(e^{-1})^2 \times e^2$ **d.** $e^{\frac{5}{2}} \times \sqrt{e}$ **e.** $\frac{e^{-4}}{e} \times e^{10}$ **f.** $\frac{(e^2)^3}{e^4}$

f.
$$\frac{(e^2)^3}{e^4}$$

Exercice 6 corrigé disponible

Simplifier les expressions suivantes.

a.
$$e^{-x} \times e^{x}$$

a.
$$e^{-x} \times e^{x}$$
 b. $e^{x+2} \times e^{3x}$

c.
$$e^{2-x} \times e^{x-1}$$

d.
$$\frac{e^{4x}}{e^{2x}}$$

e.
$$\frac{e^{1-x}}{e^{3x+4}}$$

$$\mathbf{f.} \quad \frac{\left(e^{x-1}\right)^2}{e^{2x}}$$

Exercice 7 corrigé disponible

Résoudre les équations suivantes.

a.
$$e^x = e^{2x}$$

b.
$$e^{2x+3} = 1$$

a.
$$e^x = e^{2x}$$
 b. $e^{2x+3} = 1$ **c.** $e^{-x^3+x} = 0$

d.
$$e^{4x-1} = e^{x+5}$$
 e. $e^x - e^{-x} = 0$ **f.** $e^{4x} = \frac{1}{2}$

e.
$$e^x - e^{-x} = 0$$

f.
$$e^{4x} = \frac{1}{e}$$

Exercice 8

Simplifier l'écriture du nombre $\frac{3^{2x+2}}{3^{2x+1}} \times 3^x$

Exercice 9

Associer les 4 courbes C_1 , C_2 , C_3 et C_4 aux fonctions suivantes :

Exercice 10

Calculer:

- a) $\frac{(2^3)^2}{2^6}$ b) $0.7^{-1} \times 0.7$ c) $e^2 \times e^{-2}$ d) $(2^2 + 1)^2$

Exercice 11

Prouver les égalités suivantes :

- a) $4^{\frac{1}{6}} = 2^{\frac{1}{3}}$ b) $8^{\frac{1}{3}} = 32^{\frac{1}{5}}$ c) $27^{\frac{5}{3}} = 3^5$ d) $\frac{2^3}{2^{-3}} = 4^3$ e) $16^{-\frac{3}{4}} = \frac{1}{8}$ f) $27^{\frac{3}{2}} = (\sqrt{3})^9$.

Exercice 12

Résoudre dans IR les équations suivantes :

- a) $2^{x}=8$ b) $2^{x}=4^{x+1}$ c) $0.81^{x}=1$ d) $1.39^{2x}=1$ e) $27\times 3^{x}=3^{2-x}$ f) $3^{x^{2}}=9$ g) $(2^{x}+1)(2^{x}-1)=0$ h) $2^{x}(2^{2x}-1)=2^{x}$

Exercice 13

Résoudre dans IR les équations suivantes :

a)
$$e^{x+1} = 1$$

- a) $e^{x+1}=1$ b) $e^{2x+1}=e$ c) $e^{3x-1}=e^x$ d) $(e^x+1)^2=1$ e) $e^{x(x+1)}=1$ f) $e^{x-3}=e^{2-3x}$ g) $e^{5x}=e^{x^2+1}$ h) $e^x=\frac{1}{e^{x+1}}$

Exercice 14

Résoudre dans IR les inéquations :

- a) $1,25^{x-1} < 1,25$ b) $4,1^{3x} < 4,1^{x+1}$ c) $0,72^x \le 0,72$ d) $0,72^{3x} < 0,72^{x+1}$

- e) $2^{3x} < 4^{2x+1}$ f) $27^{-x} \ge 3^{x+2}$ g) $(0.25^x + 1)^2 > 1$ h) $(0.25^x + 1)(0.25^x 1) \le 0$

Exercice 15

Une entreprise prépare et conditionne en continu du jus d'orange. Sa production horaire est, au départ, de 3000 L. Puis on estime que celle-ci augmente de 4% par jour. On note P(x) la production horaire, en L, au bout de x jours d'évolution. Alors :

- a) P(x) = 3000 + 0.04x
- b) $P(x) = 3000 + 0.04^{x}$
- c) $P(x) = 3000 \times 1.04^{x}$

La production horaire au bout de 2 semaines et 3 jours est, arrondie au litre près :

a) $P(2.3) \approx 3283$

b) 3300

c) 3335

Exercice 16

1. Déterminer le sens de variations des fonctions définies sur \mathbb{R} par :

a.
$$t \mapsto -2 \times 1,4^t$$

b.
$$t \mapsto 9.85 \times 0.85^t$$

c.
$$t \mapsto 0.8 \times 2.25^t$$

2. Déterminer le sens de variations des fonctions définies sur \mathbb{R} par :

a.
$$x \mapsto \frac{1}{3} \times \left(\frac{4}{5}\right)^x$$

b.
$$x \mapsto 2 \times \left(\frac{5}{4}\right)^x$$

a.
$$x \mapsto \frac{1}{3} \times \left(\frac{4}{5}\right)^x$$
 b. $x \mapsto 2 \times \left(\frac{5}{4}\right)^x$ **c.** $x \mapsto -\frac{7}{12} \times \left(\frac{2020}{2019}\right)^x$

Exercice 17

La pression atmosphérique est égale à 1 013 hPa (hectoPascal) au niveau de la mer, et diminue régulièrement de 12 % à chaque fois que l'on monte de 1 000 mètres.

Il s'agit d'une décroissance exponentielle.

On peut la modéliser par une fonction P de l'altitude h en milliers de mètres vérifiant :

$$P(h) = k \times a^h$$

- 1. Déterminer les constantes k et a.
- 2. Calculer la pression à 5 500 m d'altitude à 1 hPa près.

Exercice 18

La température T (en °C) d'une tasse de café que l'on laisse refroidir après l'avoir sortie d'un four à micro-ondes diminue en fonction du temps t (en minute) suivant la formule :

$$T(t) = 21 + 65 \times 0.9^{t}$$

- 1. Quelle est la température du café à sa sortie du four puis au bout de 5 minutes?
- 2. Combien de temps doit attendre une personne qui aime boire son café à 55 °C?
- 3. Quelle semble être la température de la pièce?

Exercice 19

Simplifier les expressions suivantes puis calculer leur valeur :

1.
$$a = 5^{1.7} \times 5^{1.3}$$

2.
$$b = \left(2^{-\frac{1}{3}}\right)^6$$

1.
$$a = 5^{1,7} \times 5^{1,3}$$
 2. $b = \left(2^{-\frac{1}{3}}\right)^6$ **3.** $c = 4^{-0,7} \times \frac{1}{4^{0,3}}$ **4.** $d = \frac{6^{4,5} \times 6^{2,3}}{\left(6^{1,6}\right)^3}$

4.
$$d = \frac{6^{4,5} \times 6^{2,6}}{\left(6^{1,6}\right)^3}$$

Exercice 20

Le chiffre d'affaires d'une entreprise a augmenté de 38 % en trois ans.

Calculer l'augmentation annuelle moyenne du chiffre d'affaires à 0,1 % près.

Exercice 21

D'un navire perdu au Nouveau Monde débarque 4 souris. Un an après, les souris, qui se reproduisent de façon exponentielle, sont 34.

Combien de souris seront présentes deux an et demi après le débarquement.

Exercice 22

Un site internet comptait 46 400 abonnés le 1er septembre 2018 et 51 156 abonnés le 1er septembre 2020.

- 1. Déterminer le taux de croissance annuel moyen de 2018 à 2020.
- 2. Le directeur du site suppose que la croissance va se poursuivre au même rythme et décide de modéliser le nombre d'abonnés par une fonction f du type $x \mapsto k \times a^x$ où x est le nombre d'années écoulées depuis le 1er septembre 2020.
 - **a.** Déterminer les valeurs de k et a.
 - **b.** Donner la valeur de f(-2) sans utiliser de calculatrice.
 - c. Déterminer, selon ce modèle, le nombre d'abonnés prévus le 25 décembre 2020.
 - d. Déterminer, à l'aide de la calculatrice, à quelle date le nombre d'abonnés dépassera 60 000.

Exercice 23

Le 1er janvier 2019, on a placé 5 000 euros sur un compte avec un rendement annuel de 2 %.

Les intérêts produits sont calculés au moment du retrait en tenant compte du nombre exact de jours.

La somme d'argent disponible au bout de x années est donnée par $s(x) = k \times a^x$ où k et a sont des réels à déterminer.

- 1. Déterminer k et a.
- 2. Quelle somme d'argent sera disponible le 8 avril 2019? Et le 15 novembre 2022?
- 3. Calculer le taux mensuel de ce placement à 0,01 % près.
- **4.** Calculer de deux façons différentes la somme d'argent disponible le 1^{er} juillet 2019. Quel résultat est le plus fiable?

Exercice 24

- 1. Une action baisse de 20 % une année, puis de 80 % l'année suivante.
 - Quel est le pourcentage de baisse annuel moyen.
- 2. Quel est le taux d'évolution moyen correspondant à une hausse de 60 %, suivie d'une baisse de 60 %.

Exercice 25

Le nombre d'adhérentes à un club de basket a augmenté lors des trois dernières années de 2,5%, puis de 4,1%, et enfin de 3,8%.

Calculer le taux d'évolution annuel moyen.